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Motivation p 2/67

• Your course of studies has now shown you how to price several types of exotics analytically.

You have studied generic pricing techniques such as Monte Carlo simulation and PDE lattice

methods which can, potentially, price many different types of exotic options under many

different types of stochastic processes.

• So pricing exotic options is easy, right?

• We are given the payoff of the exotic option by our trader. We choose our favourite stochastic

process. Naturally, to show how clever we are, it has stochastic vol, stochastic skew, jumps,

local volatility, stochastic interest-rates,...

• We calibrate our model to the market prices of vanilla (standard European) options.

Naturally, the fit to vanillas is wonderful which just reinforces how great our model must be.

• We price the exotic option in question. The trader now has an arbitrage-free price - so nothing

could possibly be wrong with it (!). The trader puts a bid-offer spread around our price

(usually the spread is 10 per cent or more of the price). The sales person may add on a further

sales margin (which may be another 10 per cent or more).
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Motivation 2 p 3/67

• Everyone is happy.

• Nothing could go wrong, could it?
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Motivation 3 p 4/67

• Everyone is happy.

• Nothing could go wrong, could it?

• Well, actually lots of things can go wrong.

• Pricing a book of exotics is not easy. It can sometimes be an art as well as a science.

• I will attempt to highlight a few of the problems - and a few possible solutions.
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Possible problems p 5/67

• Talk outline:

• Robust pricing of exotics.

• Choice of model.

• Vanilla and barrier fx options.

• Model calibration.
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Robust pricing of exotics p 6/67

•
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The meaning of robust pricing p 7/67

• Because the price of exotic options can often be highly sensitive to the chosen model, robust

pricing methodologies are very attractive. A robust pricing methodology can, loosely, be

defined as one which works for two or more (classes of) models. Because it works for two or

more models, there is robustness against model error (either misspecification of the type of

stochastic process and/or misestimation of the parameters of the process).

• An example of this is as follows:
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Binary cash-or-nothing option equals a call spread p 8/67

• Consider a binary cash-or-nothing call option (sometimes called a European digital option)

which pays one dollar if the stock price ST at expiry T is greater than or equal to the strike K

and it pays zero otherwise.

• Suppose we form a portfolio of long 1/(2∆K) vanilla call options with strike K −∆K and

short 1/(2∆K) vanilla call options with strike K + ∆K, where ∆K > 0.

• The payoff of the portfolio at expiry is:

1/(2∆K)[ST − (K −∆K)]− 1/(2∆K)[ST − (K + ∆K)] = 1 if ST ≥ K + ∆K,

0 if ST < K −∆K,

0 < 1/(2∆K)[ST − (K −∆K)] < 1 if K −∆K ≤ ST < K + ∆K.

• If we consider the limit as ∆K → 0, then we see that the payoff of the portfolio replicates that

of the binary cash-or-nothing call option.
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Binary cash-or-nothing option equals a call spread 2 p 9/67

• Let us denote by V (K, σ(K)) the price of a vanilla call option with strike K and with implied

Black and Scholes (1973) volatility σ(K).

• Then, in the absence of arbitrage, the price of the binary cash-or-nothing call option is:

lim ∆K ↓ 0
V (K −∆K, σ(K −∆K))− V (K + ∆K, σ(K + ∆K))

2∆K
= −dV

dK

= −∂V
∂K
− ∂V

∂σ

∂σ

∂K

• Note that we can compute the term − ∂V
∂K by noting that it is the discount factor exp(−rT )

multiplied by the N(d2) term in the Black and Scholes (1973) formula, evaluated with strike

K and volatility σ(K):

−∂V
∂K

= exp(−rT )N(d2)

• We can compute the term ∂V
∂σ

∂σ
∂K by noting it is the “vega” multiplied by the “volatility skew”.
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Binary cash-or-nothing option equals a call spread 3 p 10/67

• This formula gives us a non-parametric methodology for pricing binary cash-or-nothing call

options in the presence of a volatility skew or smile.

• If the volatility surface is negatively-skewed as it is for equities, then the term ∂V
∂σ

∂σ
∂K is

negative and so the presence of the skew increases the price of a binary cash-or-nothing call

option relative to its price in a (constant volatility) Black and Scholes (1973) world.

• The vanilla call spread gives us the hedge. In practice, there is a problem in that, in the limit

∆K → 0, we have to simultaneously both buy and sell an infinite quantity of vanilla options

(!). Recognising that this is not possible, a safer strategy is sub- or super-replication.
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Binary cash-or-nothing option equals a call spread 4 p 11/67

• Suppose we write a binary cash-or-nothing call option with strike K (an analogous strategy

can be used if we are buying the option) and there are vanilla options, with strikes K1 and K2,

which we can respectively buy and sell in the market at prices V (K1, σ(K1)) and

V (K2, σ(K2)), where K1 < K2 < K. Then if we buy 1/(K2 −K1) of the options with strike

K1 and we sell 1/(K2 −K1) of the options with strike K2, we can super-replicate the binary

cash-or-nothing call option payoff. The closer to K that K2 is, the cheaper this

super-replicating portfolio is. Note that in the event that it turns out that the stock price is

between K1 and K2 at expiry, then we always make money on our strategy.

• There are potentially economies of scale here in the sense that if we already have vanilla

options with strike K on our books, we may be able to use these as part of our hedge.

• This illustrates a general principle of hedging a book of exotic options which is that it is much

easier if you already have a large vanilla options book.

• Note that we can get the price of a binary cash-or-nothing put option by a “put-call parity”

relation (namely, that a binary cash-or-nothing call option plus a binary cash-or-nothing put

option equals the discount factor to expiry).
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Choice of model p 12/67

•
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Schoutens, Simons and Tistaert p 13/67

• Two papers by Schoutens, Simons and Tistaert illustrate a general feature of pricing exotic

options.

• Specifically, in the first paper, they calibrated seven different stochastic models to the market

prices of 144 different vanilla options on the Eurostoxx 50 index with maturities ranging from

less than a month to just over five years. The models were sophisticated models (HEST,

HESTJ, BNS, VGCIR, VGOU, NIGCIR, NIGOU) with between five and eight free

parameters.

• Any model with this number of parameters should be able to give a decent fit to the market

prices of vanilla options and, indeed, the paper demonstrates this. We leave aside for now

important issues such as what happens if the error function has many local minima, potential

parameter instability arising and the effect of parameter instability through time on hedging

performance (see later).

• Using Monte Carlo simulation, a number of different exotic options were priced.
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Schoutens, Simons and Tistaert 2 p 14/67

• A brief selection of prices are:

Lookback call options.

Model HEST HESJ BNS V GCIR V GOU NIGCIR NIGOU

Price 838.48 845.19 771.28 724.80 713.49 730.84 722.34

Cliquet options with local floor at -0.03, local cap at 0.05 and global floor at -0.05.

Model HEST HESJ BNS V GCIR V GOU NIGCIR NIGOU

Price 0.0729 0.0724 0.0788 0.1001 0.1131 0.0990 0.1092

All prices are quoted from Schoutens, Simons and Tistaert (“A Perfect Calibration! Now

What?”, Wilmott magazine, 2004 or see Wim Schouten’s website).
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Schoutens, Simons and Tistaert 3 p 15/67

• We can see that there is a large variation in the prices of these exotic options.

• In the case of the lookback options, the variation is more than 18 per cent.

• In the case of the cliquet options, the variation is more than 56 per cent.

• In the case of barrier options, results in Schoutens, Simons and Tistaert show that the

variation can be more than 200 per cent (especially if the spot price is close to the barrier

level).

• Now it is worth remembering that the bid-offer spreads will typically be greater than ten per

cent (even much more for barrier options when the spot price is close to the barrier level).

• However, the variation in the exotic option prices over the seven different models is still such

that the highest bid will be greater than the lowest offer.
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Schoutens, Simons and Tistaert 4 p 16/67

• This means that, for example, a hedge fund could, in principle, make money by buying from

the lowest offer and simultaneously selling at the highest bid if it knew that these models were

being used by particular market-making investment banks.

• This is potentially a very dangerous situation for either market-making bank.

• This is called “adverse price discovery risk”.

• It is the risk you do a lot of business because your prices are out of line with other banks.

• Totem prices from MarkIT can help identify this risk.

• A number of banks (for example, UBS, Barclays Capital and others) provide “live”

screen-based prices for first and second generation exotics. These prices can also be used to

identify this risk.
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Schoutens, Simons and Tistaert 5 p 17/67

• It is important to see where your prices lie in relation to other banks’ prices.

• This is a variation on the saying of John Maynard Keynes: “It is better to be wrong

conventionally than right unconventionally”.

• This, in turn, means that models have to be chosen not only so as to match the market prices

of vanilla options but also, where possible, to match the observable prices of exotic options.

This may rule out the use of some models and/or require the use of different models for

different types of exotic options and/or require the development of new types of models with

the built-in flexibility to fit the market prices of both vanilla and exotic options.
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Vanilla and barrier fx options p 18/67

•

18



DNT options on fx p 19/67

• A paper by Lipton and McGhee illustrates some of these features.

• In the foreign exchange (fx) options markets, barrier options are very actively traded. Many

different types of barrier options (single barrier, double barrier, with or without rebates,

partial, window, etc) trade but, by far, the most actively traded barrier options are

double-no-touch (DNT) options. These pay one unit of domestic currency at expiry if the spot

fx rate (quoted as the number of units of domestic currency per unit of foreign currency) never

trades equal to or outside a lower barrier level nor an upper barrier level. If either the lower

barrier level or the upper barrier level are touched or breached prior to expiry, the option

expires worthless.

• The market prices of DNT options on major currency pairs are widely available to

market-making banks - either through inter-dealer brokers or through “live” screen prices.

Hence, it is desirable that any model can fit these market prices.

• The market-standard working assumption made in pricing these DNT options is that the spot

fx rate is monitored continuously to see if the barrier levels have been hit (in practice,

monitoring is continuous from Monday morning in Sydney until Friday close in New York).
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Lipton and McGhee p 20/67

• Lipton and McGhee make a number of observations:

• If a Dupire (1994) local volatility model is calibrated to the market prices of vanilla options,

and then used to price DNT options, the resulting model DNT option prices are less than the

market prices i.e. a local volatility model tends to under-price DNT options relative to the

market prices. For example, the model price may be around 50 to 75 per cent of the market

price.

• If a stochastic volatility (for example, Heston (1993)) model is calibrated to the market prices

of vanilla options, and then used to price DNT options, the resulting model DNT option prices

are greater than the market prices i.e. a stochastic volatility model tends to over-price DNT

options relative to the market prices. For example, the model price may be around 125 to 150

per cent of the market price.

• In either case, the degree of mis-pricing is well in excess of the bid-offer spread (which is

usually around 2 to 4 per cent of notional - eg. if the mid-market price is 0.48, then the

bid-offer spread might be 0.465 to 0.495).
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Lipton and McGhee 2 p 21/67

• The above observations are fairly robust to which type of stochastic volatility model is chosen

and which currency pair is chosen (at least for major currency pairs).

• Adding a compound Poisson jump process may give a more realistic fit to the short-term

skew/smile but it doesn’t change the broad conclusion regarding DNT option prices.

• Lipton and McGhee did not consider pure jump Levy processes such as CGMY but my

experience is that, if calibrated to vanilla options, the CGMY model over-prices DNT options

relative to market prices.

• The above observations lead Lipton and McGhee to propose their “Universal Volatility” model.
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Lipton and McGhee 3 p 22/67

• Let us denote the spot fx rate, at time t, by S(t) ≡ S. Domestic (respectively, foreign)

interest-rates are denoted by rd (respectively, rf). Lipton and McGhee proposed the following

risk-neutral dynamics:

dS

S
= (rd − rf − λm)dt + σL(t, S(t))

√
V (t)dzS(t) + (exp(J)− 1)dN(t),

dV (t) = κ(θ − V (t))dt + ε
√
V (t)dzV (t), V (0) ≡ V0,

where λ is the intensity rate of the Poisson process N(t), the Brownian motions zS(t) and

zV (t) have constant correlation ρ, m = E[exp(J)− 1] and where V (t) is a stochastic volatility

(or stochastic variance to be more exact) and σL(t, S(t)) is a local volatility function.

• If σL(t, S(t)) ≡ 1, then the model is the same as Heston (1993) (plus jumps).

• If ε ≡ 0, then the model is the same as Dupire (1994) (plus jumps).
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Lipton and McGhee 4 p 23/67

• Either Heston (1993) (plus jumps or without jumps) or Dupire (1994) (plus jumps or without

jumps) could (on their own) be calibrated to the market prices of vanilla options. The key

issue is that we can “mix” the local volatility and the stochastic volatility. Essentially, by

“tweaking” the vol-of-vol parameter ε to some value which is between that value it would take

if σL(t, S(t)) ≡ 1 (the value it would take in a wholly stochastic volatility model) and zero

(the value it would take in a wholly local volatility model), we find the value which can

approximately match the market prices of DNT options.

• To put it another way, a local volatility model tends to under-price DNT options relative to

the market prices, a stochastic volatility model tends to over-price DNT options relative to the

market prices, so we should be able to “mix” the two models by “tweaking” the vol-of-vol

parameter ε in such a way that we match the market prices of DNT options. (In practice,

“tweaking” ε will likely cause other parameters to change somewhat).
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Lipton and McGhee 5 p 24/67

• A few comments are in order:

• Lipton and McGhee was published in 2002. Since publication, this model has become a kind

of market standard model and is used by many banks. It is quite common - in fact, nearly

standard - to NOT have a jump term as it complicates the solution but this is to the

detriment of fitting short-dated options.

• Parameterizations of the local volatility function of the form σL(t, S(t))S(t) = a + bS(t) i.e.

displaced diffusion do NOT seem to fit the market at all. One typically parameterises the local

volatility function σL(t, S(t)) = α + β(S(t)− S(0)) + γ(S(t)− S(0))2 , where α, β and γ are

independent of S(t).

• No useful (by which we mean except in limited special cases) analytic formulae exist for either

vanilla option prices or barrier option prices. Therefore, all options are priced by numerically

solving the relevant two-factor (plus time) PDE.

• One invariably uses term structures of interest-rates in both currencies which poses no extra

difficulty in solving the PDE numerically.
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Lipton and McGhee 6 p 25/67

• With an efficient ADI implementation, a whole grid of options can typically be priced in

around 2 seconds.

• The model has a number of attractive features. However, it is not perfect. Bid-offer spreads

have declined and volatility skews have become more severe (especially dollar/yen and even

before the credit crunch) since the model was first introduced. Now, in order to closely match

both vanilla and DNT (or other barrier option) prices, one needs to introduce time-dependent

parameters.

• This involves making the parameters α, β and γ of the local volatility function as well as, at

least, the vol-of-vol parameter ε time-dependent.

• Often, calibrations to real market data show these parameters varying in a way that is not

credible or believable from a financial perspective. By the time one has finished, one might ask

whether one has a model or a giant interpolation machine.
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Alternative models p 26/67

• Much more recently, two other alternative models have been proposed. The first was proposed

by Dherminder Kainth and the second by Peter Carr and John Crosby. Both models produce

excellent (in fact, astonishingly good) fits without the need for time-dependent parameters and

both models give very realistic (risk-neutral) dynamics. We will now describe both models in

more detail.
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Double Heston p 27/67

• The Kainth model utilises what he calls a “double Heston” process. Let us denote the spot fx

rate, at time t, by S(t) ≡ S. Domestic (respectively, foreign) interest-rates are denoted by rd
(respectively, rf). The risk-neutral dynamics are:

dS

S
= (rd − rf)dt +

2∑
i=1

√
Vi(t)dWi(t),

dV1(t) = κ1(θ1 − V1(t))dt + ε1
√
V1(t)dz1(t), V1(0) ≡ V0,1,

dV2(t) = κ2(θ2 − V2(t))dt + ε2
√
V2(t)dz2(t), V2(0) ≡ V0,2.

The parameters κ1, θ1, ε1, V0,1, κ2, θ2, ε2, V0,2 are positive constants. There are two stochastic

variance processes V1(t) and V2(t), with initial (time zero) values V0,1 and V0,2 respectively.

Both stochastic variance processes drive the process for the spot fx rate. The processes W1(t),

W2(t), z1(t) and z2(t) are standard Brownian motions with the following correlation structure:

E[dz1(t)dW1(t)] = ρ1, E[dz2(t)dW2(t)] = ρ2.

All other correlations are identically equal to zero. In particular,

E[dz1(t)dz2(t)] = 0, E[dW1(t)dW2(t)] = 0, E[dz1(t)dW2(t)] = 0, E[dz2(t)dW1(t)] = 0.
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Double Heston 2 p 28/67

• The way the correlation structure is set up is important. In particular, it is part of the model

design that it is intended that ρ1 and ρ2 will have opposite signs (eg. ρ1 is negative and ρ2 is

positive).

• If we define Σ2 ≡ V1(t) + V2(t), then the dynamics of S(t) can be written in the form:

d(logS) = (rd − rf −
1

2
Σ2)dt + ΣdW (t).

This shows that what we have is a three-factor model.

• Both vanilla options and DNT options (or other types of barrier options or exotic options) can

be priced by numerically solving a three-factor PDE (i.e. three factors plus time).

• However, for vanilla options, (much faster) Fourier inversion methods can also be used because

the characteristic function can be computed in closed-form.
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Double Heston 3 p 29/67

• Exotic options can also be priced by Monte Carlo simulation.

• Using term structures of interest-rates in both currencies poses no extra difficulty.

• One could also easily allow some of the parameters (eg. ε1 and ε2) to be time-dependent.

• However, that seems to be unnecessary. Kainth shows that, at least, for major currency pairs

and the data-set considered, this double Heston model can give an excellent fit to the market

prices of both vanilla and DNT fx options with all parameters constant.

• The double Heston model also has two additional attractive features:
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Double Heston 4 p 30/67

• Kainth (2007) (talk given at the ICBI Global Derivatives conference, Paris, May 2007) gives

an example of parameter values obtained from a calibration:

Process First Second

i 1 2√
V0,i 0.09135 0.06599√
θi 0.08583 0.05800

κi 2.132 5.493

ρi −0.8646 0.9612

• Notice how this seems to suggest two distinct processes, the first with a low mean reversion

rate and the second with a high mean reversion. The idea of two characteristic time-scales for

mean reversion is certainly appealing.

• Furthermore, the first correlation is large and negative and the second correlation is large and

positive.
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Double Heston 5 p 31/67

• If we consider the process for Σ2 = V1(t) + V2(t), we find (from Ito’s lemma) that:

dΣ = [. . .]dt +
ε1

√
V1(t)

2
√
V1(t) + V2(t)

dz1(t) +
ε2

√
V2(t)

2
√
V1(t) + V2(t)

dz2(t). (1)

• Furthermore, the instantaneous correlation between d(logS) and dΣ is:

ε1ρ1V1(t) + ε2ρ2V2(t)

2((V1(t) + V2(t))(ε21V1(t) + ε22V2(t)))1/2
, (2)

which (loosely speaking) is proportional to ε1ρ1V1(t) + ε2ρ2V2(t). Clearly, this instantaneous

correlation is stochastic since it changes as V1(t) and V2(t) change.

• We have noted that we expect ρ1 and ρ2 to have opposite signs (borne out by the calibration

above). Also, ε1, V1(t), ε2, V2(t) are all non-negative.

• We see that the instantaneous correlation between d(logS) and dΣ is not only stochastic but

can be negative or positive and can actually switch sign through time (provided, to repeat, ρ1

and ρ2 are of opposite sign).
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Stochastic skew p 32/67

• This is linked to the idea of stochastic skew.

• Stochastic skew was a term first coined in a paper by Carr and Wu in connection with foreign

exchange (fx) options. Consider the implied volatility of a call option with a delta of 0.25 (and

a given maturity) and subtract from it the implied volatility of a put option with a delta of

-0.25 (and the same maturity). This is called the 25-delta risk-reversal and is very actively

traded in the fx options markets.

• Carr and Wu document that, not only the magnitude, but, also, the sign of the 25-delta

risk-reversal changes through time for major currency pairs. This is in contrast to the equity

options markets where risk-reversals are always negative. Since the risk-reversal is essentially a

measure of the skewness of the (risk-neutral) distribution, we see that in order to capture this

feature, we need the instantaneous correlation between d(logS) and dΣ to be able to change

sign.
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Stochastic skew 2 p 33/67

• Most models cannot capture this. For example, in the Heston (1993) model (i.e. single

Heston), the instantaneous correlation between d(logS) and dΣ always has the sign of the ρ

parameter and cannot change sign (since ρ is a constant).

• In their paper, Carr and Wu propose a class of stochastic processes which can capture

stochastic skew of which the double Heston model is a special case.

• The ability of the double Heston model to capture stochastic skew is a very attractive feature.

• Taking everything into account, the double Heston model is very appealing.

• Its main drawback is that one is very reliant on solving a three-factor (plus time) PDE

numerically or Monte Carlo simulation for the pricing of exotic options (both of which will be

relatively slow).
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Carr and Crosby p 34/67

• The models of Lipton and McGhee and of Kainth could broadly be described as: “Make the

stochastic process richer, more complicated with more parameters and hope that, eventually,

you have enough degrees of freedom to match the market prices of both vanilla and barrier fx

options”. In fact, this is broadly the approach of nearly all models in the financial literature.

• By contrast, the paper by Carr and Crosby tries a rather different line-of-attack.

• Firstly, we define some notation. We denote the initial time (today) by t0 and denote calendar

time by t, t ≥ t0. We denote the spot fx rate, at time t, by S(t). Domestic (respectively,

foreign) interest-rates are denoted by rd (respectively, rf).

• We introduce levels L and U (with L < S(t0) < U). Intuitively, these correspond to the lower

and upper barrier levels of DNT options to which the model will be calibrated (that statement

provides the intutition - the model is actually more flexible than that).

• We refer to the region (L,U) as the “corridor”.
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Carr and Crosby 2 p 35/67

• We denote the first exit time of the spot FX rate from the corridor by τ i.e. we define:

τ = inf {t : S(t) ≤ L or S(t) ≥ U, t ≥ t0}.
If the spot FX rate S(t), t ≥ t0, has always been strictly between L and U i.e. the spot FX

rate has never exited from the corridor, then the convention is that we set τ =∞.

• We specify the dynamics of the spot FX rate S(t) by specifying two auxiliary stochastic

processes S1(t) and S2(t).

• We assume that the dynamics, under the risk-neutral measure, of the spot FX rate S(t), at

time t , for t ∈ (t0, τ ) are: S(t) = S1(t), where S1(t), for all t ∈ [t0,∞), follows an

arbitrage-free stochastic process with S1(t0) = S(t0). Note that S(t0) and S1(t0) are equal and

known at time t0 and that, for all t ∈ [t0, τ ), the spot FX rate satisfies:

Et0[S(t)] = Et0[S1(t)] = S1(t0) exp((rd − rf)(t− t0)) = S(t0) exp((rd − rf)(t− t0)).
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Carr and Crosby 3 p 36/67

• The dynamics of the spot FX rate, for all t ∈ [t0,∞), are constructed as follows: We have

already defined the stochastic process S1(t), for all t ∈ [t0,∞). Now we define S2(t) to be an

arbitrage-free stochastic process. In particular, for all t ≥ τ ,

Eτ [S2(t)] = S2(τ ) exp((rd − rf)(t− τ )).

Furthermore, we require:

S2(τ ) = S1(τ ).

We assume that the dynamics, under the risk-neutral measure, of the spot FX rate S(t), at

time t , for t ∈ [τ,∞), are:

S(t) = S2(t).
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Carr and Crosby 4 p 37/67

• Hence, it is clear that the dynamics of the spot FX rate S(t), for all t ∈ [t0,∞), are of the

form:

S(t) = S1(t)I(t < τ ) + S2(t)I(t ≥ τ ),

where I(•) denotes the indicator function. The dynamics are those of a mixture model but

with random weights governed by the stopping time τ . Note, it can easily be verified using the

optional stopping theorem that for all t ∈ [t0,∞),

Et0[S(t)] = S(t0) exp((rd − rf)(t− t0)),

which is required in the absence of arbitrage.

• In words, the key idea of Carr and Crosby is that the spot fx rate follows one (arbitrage-free)

stochastic process while the spot fx rate has never exited from the corridor. From the instant,

t = τ , at which the spot fx rate touches or breaches either the lower or the upper barrier level

for the first time, the spot fx rate follows a different (arbitrage-free) stochastic process.
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Carr and Crosby 5 p 38/67

• The change in dynamics of the spot fx rate is a one-off change in the sense that if the spot fx

rate later returns to the corridor (L,U), the dynamics of the spot fx rate do NOT return to

those of the first stochastic process S1(t).

• The condition S2(τ ) = S1(τ ) means, in words, that “the second stochastic process S2(t) starts

off from where the first stochastic process S1(t) left it”. In particular, it rules out ridiculous

behaviour such as the spot fx rate breaches the upper barrier level U and then the second

stochastic process starts off from below the lower barrier level L.

• The definition of the spot fx rate in terms of the auxiliary stochastic processes S1(t) and S2(t)

just formalises the key idea that there is a one-off change in the dynamics of the spot fx rate

at the first exit time from the corridor.
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• The reason for defining the auxiliary stochastic processes S1(t) and S2(t) is to make more

formal the definition of the model. In particular, Carr and Crosby allow the stochastic

processes S1(t) and S2(t) to be jump processes. Specifically, this means that although

S2(τ ) = S1(τ ) is certainly a requirement, it is not necessarily the case that S1(τ ) = L or

S1(τ ) = U . This is because it is possible for the stochastic process S1(t), and hence the spot

fx rate, to jump straight through (“overshoot”) either the lower barrier level L or the upper

barrier level U .

• Hence, it is possible that S1(τ ) < L or S1(τ ) > U .

• The possibility of “overshoot” complicates the model and means that analytical solutions are

only available for certain jump processes (hyperexponential jump-diffusions (possibly

time-changed)).

• Nonetheless, the model framework allows for a rich variety of dynamics for S1(t) and S2(t),

including multiple jump processes and stochastic volatility (or stochastic time-changes).
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• A key point is that the prices of barrier options (including DNT options and double barrier

knockout options) which knockout at the barrier levels L and U are unaffected by the change

in dynamics at the first exit time from the corridor (L,U) because if the spot fx rate exits

from the corridor, these barrier options expire worthless.

• The model framework of Carr and Crosby allows the prices of barrier options (including DNT

options and double barrier knockout options), with barriers at L and U to be determined

analytically (upto Laplace inversion). Hence, we can estimate the model parameters for the

stochastic process S1(t) by calibrating the model to the market prices of DNT options

(provided the barrier levels are L and U or are inside (L,U)). This can be done independently

of any assumptions about the nature of or the parameters of the stochastic process S2(t).
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• In order to price vanilla options, note that the price of a vanilla option is the price of a double

barrier knockout option plus a double barrier knockin option (“in-out parity”). The model

framework allows double barrier knockout options to be priced analytically (upto Laplace

inversion). Again, the prices of double barrier knockout options are unaffected by the change

in dynamics at the first exit time from the corridor (L,U) because if the spot fx rate exits

from the corridor, double barrier knockout options expire worthless.

• Carr and Crosby show that double barrier knockin options can also be priced analytically (for

the class of stochastic processes they consider). Hence, vanilla option prices can be determined

from “in-out parity”.

• Calibration of the Carr and Crosby model is in two stages:
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• In the first stage, they estimate the model parameters of the stochastic process S1(t) by

calibrating to the market prices of DNT options.

• They then regard these model parameters as fixed.

• They then price double barrier knockout options with the same strikes and maturities as the

vanilla options to which they will calibrate in the second stage (using the model parameters

just estimated).

• They subtract these double barrier knockout option prices from the market prices of the

corresponding vanilla options to get the implied market prices of double barrier knockin

options which they will use in the second stage.

• In the second stage, they estimate the model parameters of the stochastic process S2(t) by

calibrating to the market prices of vanilla options using as an intermediate step the implied

market prices of double barrier knockin options which were obtained in the first stage.

42



Carr and Crosby 10 p 43/67

• The benefit of the methodology is that, instead of one large calibration, the problem is broken

down into two independent smaller calibrations.

• Carr and Crosby demonstrate impressive fits to the market prices of both barrier and vanilla

fx options.

• Calibration of the Carr and Crosby model is made faster by virtue of the fact that both vanilla

and barrier options can be priced analytically (for the types of stochastic processes they

considered).

• Additional positive features of the model are that it can allow for a rich variety of stochastic

prcesses, including allowing for stochastic volatility and stochastic skew.

• Once you introduce jumps into a model, one is required to solve a PIDE (partial

integro-differential equation) which is inevitably much harder than solving a PDE. The PIDE

in this model would be particularly challenging. Hence, a drawback of the Carr and Crosby

model is that almost all other types of exotic options (i.e. ones for which no analytical results

exist) require Monte Carlo simulation.
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• The key assumption in the Carr and Crosby model is that the dynamics of the spot fx rate

can change at the first exit time from the corridor. With this assumption, it is possible to get

excellent fits (by design) to the market prices of both vanilla and barrier fx options.

• In the paper, they provide some possible explanations and tentative reasons why the

assumption of the change of dynamics at the first exit time may be justified or plausible -

theoretically and empirically.
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•
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• The typical calibration problem can be described as follows:

• We are given a set of N market option prices (usually, they are all vanilla options) Ci(Ki, Ti)

of different strikes Ki and maturities Ti, for i = 1, . . . , N .

• We are given a stochastic processes with M parameters labelled θ = {θ1, θ2, . . . , θM} which

generates N model prices Gi(θ,Ki, Ti), for i = 1, . . . , N . Note M ≤ N .

• Then we use a “solver” algorithm (simplex, simulated annealing, Newton-Raphson, Broyden’s

method, etc) to find the values of the parameters θ which minimise:

N∑
i=1

ωi(Gi(θ,Ki, Ti)− Ci(Ki, Ti))
2

(One does not have to use the L2-norm but it is usual).

46



Calibration 2 p 47/67

• This inverse problem is not well-posed. In other words, there may be many local minima, one

of which is located by the “solver”, as opposed to the global minimum, the results may be

highly sensitive to the starting point of the “solver” algorithm and small changes in Ci(Ki, Ti),

for some i = 1, . . . , N may result in large changes in θ.

• There are suprisingly few papers or books which even acknowledge the problem here.

Exceptions include chapter 13 of Cont and Tankov (2003) and Cont and Tankov (2004). Cont

and Tankov use the concept of relative entropy, which, in fullness, is beyond the scope of this

lecture, and they focus mostly on jump-diffusion models.

• I will be less formal than Cont and Tankov and try to suggest some “rules-of-thumb”.
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• Changing the target function (i.e. the function to be minimised) may sometimes help:

• Choose the vanilla options to be puts or calls according to which is out of the money.

• One could choose the weights ωi such that they are inversely proportional to the square of the

bid-offer spreads. This gives more weight to the most liquid options. Alternatively, choose the

weights ωi such that they are inversely proportional to the square of the Black and Scholes

(1973) “vegas”. This is roughly equivalent to minimising the sum of squares of differences in

implied volatilities (which is more financially relevant and interesting).
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• Cont and Tankov’s idea of relative entropy could be summarised non-mathematically: “Use

what you know from historical data eg. real-world physical measure parameter estimates or

parameter estimates from the previous day’s calibration”.

• Suppose we are calibrating a jump-diffusion model with one Poisson process with either

Merton (1976) lognormal jumps or with fixed jump amplitudes. Cont and Tankov explain how

calibrating such models is particularly prone to parameter instability because as one increases

the intensity rate and decreases the mean jump size, the target function can move along a flat

valley.
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• We expect jumps to be rare, extreme events. Therefore, we do not expect there to be 100

jumps per year on the average. We would expect a few (eg less than 5) jumps per year on the

average. This gives a very rough estimate of the real-world physical measure jump intensity

rate. More refined estimates could be obtained from time-series data (eg recursive filtering -

which is roughly counting the number of jumps per year bigger than x standard deviations for

some choice of x).

• Real-world and risk-neutral intensity rates can be completely different in theory and will

typically not be the same in practice. However, with very rough estimates of risk-aversion

parameters, we can roughly go from one to the other. For equities, this implies risk-neutral

intensity rates will typically be higher than real-world intensity rates. For commodities,

empirical evidence suggests that risk-neutral intensity rates and real-world intensity rates are

typically quite close to one another.
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• Therefore, it should be possible to estimate a value λest for the risk-neutral intensity rate λ,

before starting the calibration. Then one can incorporate this estimate into the calibration by

use of a penalty function. Specifically, we minimise:

(wλ(λest − λ)2) +

N∑
i=1

ωi(Gi(θ,Ki, Ti)− Ci(Ki, Ti))
2,

for some positive weight wλ (which can be obtained with the help of a little trial-and-error

based on how “tightly” we wish to keep the risk-neutral intensity rate to λest).

• One could also use time-series data to estimate the mean jump size (which if the jumps are

random in size may, of course, be different in the real-world and risk-neutral measures).

Indeed, in a similar vein to above, we would probably expect the estimates of the mean jump

size to be equivalent (in magnitude) to, say, at least 2 standard deviation daily moves (the sign

can be determined from the slope of the implied volatility as a function of strike).

• By incorporating historical data into the calibration, we increase the curvature of the target

function to be minimised and so, intuitively, increase the chance of a more stable calibration.
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• If we are recalibrating a model daily (as is usual), in some cases, we might use the estimate of

a parameter from the previous day in a penalty function. This can be useful if we are worried

about parameter instability - though at risk of deteriorating calibrations if repeated over long

time periods.

• We might expect mean-reversion rates to reflect characteristic time-scales. So for example, we

might expect characteristic time-scales for fx option models with mean-reverting stochastic

volatility to be 3 months to 3 years while, for interest-rate derivatives models, we might expect

characteristic time-scales to be 3 years to 40 years. This might translate into mean-reversion

rates (at least for single-factor models with a single mean-reversion rate - we might have to

modify our reasoning if there are two mean-reversion rates) of the order of magnitude of 0.33

to 4.0 for fx options models with mean-reverting stochastic volatility and of the order of

magnitude of 0.025 to 0.33 for interest-rate derivatives.

• Bear in mind that strictly speaking (depending on the specifications of the market price(s) of

risk), mean-reversion rates can be different in the real-world measure compared to the

risk-neutral measure but given the approximations inherent in our heuristics, this seems to be

the least of our worries.
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• With some models, it is not uncommon, in practice, in the markets for quants or traders to

simply fix mean-reversion rates to plausible levels (which is just a special case of a penalty

function with an infinite weight).

• Historical time-series data may be able to give rough estimates of “vol-of-vol” parameters.
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• Such parameter estimates are very rough and approximate but, nonetheless, it should be

possible to “guesstimate” many (if not all) parameter values (at least to the right order of

magnitude) before the calibration takes place. We can then incorporate our “guesstimates”

into penalty functions.

• The penalty function need not necessarily be of the form above. For example, if we believed

that a parameter θ was very unlikely to be above some value θhigh, we could try a penalty

function of the form: (wIθ>θhigh(θ − θhigh)2), where I denotes the indicator function, for some

choice of the positive weight w.

• Similarly, we can add penalty functions if we believe that a parameter θ is very unlikely to be

below some value θlow.

• All penalty functions should be smooth.
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• Consider the G2++ Gaussian HJM interest-rate model in which continuously-compounded

instantaneous forward-rates f (t, T ), at time t, to tenor T follow the SDE:

df (t, T ) = . . .dt + σ1 exp(−α1(T − t))dz1(t) + σ2 exp(−α2(T − t))dz2(t),

where the Brownian increments dz1(t) and dz2(t) have constant correlation ρ and where σ1,

α1, σ2, α2 are positive constants (and for brevity we don’t write down the drift term - it is

easily derived from the HJM no-arbitrage condition).

• In the special case that α1 = α2, the model is degenerate and it would make financial sense to

include a penalty function which penalises if α1 and α2 are too close together. In a similar

vein, it may be helpful to include a penalty function which forces the choice of which of α1 and

α2 is the larger.

• Humped volatility curves (which, in practice, are very common in the caps and swaptions

market) are only possible if the parameter ρ is negative. So, if this is the case, we can penalise

positive values of ρ. (Clearly, we can always penalise values of ρ outside of, say,

[−0.995, 0.995]).
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• Historical data tells us that instantaneous forward interest-rates f (t, T1) and f (t, T2) of

different tenors T1 and T2 should be positively, but not perfectly, correlated. We can, from

historical data (probably using forward LIBOR rates as proxies for continuously-compounded

instantaneous forward interest-rates), estimate correl(df (t, T1), df (t, T2)) for, say, T1 = 1 and

T2 = 10 (typical values will be around 0.4).

• We can compute correl(df (t, T1), df (t, T2)) analytically within this model and use this as a

penalty function within the calibration.

• We can then use all this information when we calibrate our model parameters to the market

prices of caps or European swaptions.

• The “information” contained within knowledge of correl(df (t, T1), df (t, T2)) is different from

that contained within knowledge of the implied Black (1976) volatilities (which are essentially

equivalent to variances). This, intuitively, should help the calibration.
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• If we were very sure about the accuracy of our estimate of correl(df (t, T1), df (t, T2)), we could

even use the available analytical results to eliminate one of the parameters from the

calibration and in doing so fix correl(df (t, T1), df (t, T2)).

• Together with intuition on the mean-reversion rates, it is clear that we can and should give the

calibration a significant amount of information in the hope of making it more stable.
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• One often extends the G2++ Gaussian HJM model to allow for time-dependent (usually

piecewise constant) volatilities so as to be able to, for example, exactly match the market

prices of at-the-money-forward swaptions of different expiries.

• The best way to do this is to calibrate the model with constant parameters ρ, σ1, α1, σ2, α2.

Then set β ≡ σ2/σ1. Then hold ρ, β, α1, α2 fixed. Then define the model:

df (t, T ) = . . .dt + η(t)(exp(−α1(T − t))dz1(t) + β exp(−α2(T − t))dz2(t)),

where η(t) is a time-dependent function of t.

• This parameterization preserves the stationary correlation structure between forward rates of

different tenors, whereas a parameterization, for example, of the form:

df (t, T ) = . . .dt + σ1(t) exp(−α1(T − t))dz1(t) + σ2 exp(−α2(T − t))dz2(t),

with σ1(t) time-dependent and σ2 constant, does not.

• Then (keeping ρ, β, α1, α2 fixed), we solve for η(t) by a series of one-dimensional searches

matching market prices of increasing expiries sequentially.
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• Consider the Heston (1993) model:

dS

S
= (rd − rf)dt +

√
V (t)dzS(t),

dV (t) = κ(θ − V (t))dt + ε
√
V (t)dzV (t), V (0) ≡ V0,

correl(dzS(t), dzV (t)) = ρ.

It is not difficult to see that the value of the initial variance V0 should be approximately equal

to the implied volatility of a very short-dated at-the-money-forward option. Hence, we can use

a penalty function which penalises a value of V0 a long way from this.

• Now V (t) follows a mean-reverting diffusion process with long-run reversion level θ. If we

calibrate the model and find that the value of θ is very significantly different from V0, it would

beg the question why? After all, V (t) is a mean-reverting process which reverts to θ and so it

should not move too far away from θ at any time, including at time 0.
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• Hence, it is tempting to also use a penalty function which penalises if θ is too far from V0.

• However, it is a little harder to define what “too far” might mean.

• It can be shown that if 2κθ < ε2 (usually called the Feller condition) then the process for V (t)

can reach zero (and given that the long run mean level is θ, it must presumably be able to

move significantly above θ also). Of course, we will not know what κ and ε are until after we

have completed the calibration.
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• The last slide demands a more considered approach. Suppose we have the last D consecutive

working days data for the market prices of N options. We denote the market prices by Ci(d),

for each d = 1, . . . , D and each i = 1, . . . , N .

• Now the parameter V0 is different from the other parameters κ, θ, ε and ρ. Whereas the latter

are supposed to stay constant, the parameter V0 represents the current value of the

instantaneous variance and it is supposed to vary through time. Suppose it has the values

V
(1)
0 , V

(2)
0 , . . ., V

(D)
0 on days d = 1, . . . , D respectively.

• Let us denote by P (V (u), u, V (s), s) the transition probability density function for the

probability of V (s), at time s, transitioning to V (u), at time u, for u ≥ s. Denote by

Gi(κ, θ, ε, ρ, V
(d)
0 ) the model price of the option on day d when the variance is V

(d)
0 , for each

i = 1, . . . , N . Our calibration now minimises, by choice of the D + 4 parameters

κ, θ, ε, ρ, V
(1)
0 , V

(2)
0 , . . . , V

(D)
0 :

D∑
d=1

N∑
i=1

ωi(Gi(κ, θ, ε, ρ, V
(d)
0 )− Ci(d))2 −

D∑
d=2

P (V
(d)
0 , d, V

(d−1)
0 , d− 1).
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• The rationale for the minus sign in front of the second summation is that we want to maximise

the P (V
(d)
0 , d, V

(d−1)
0 , d− 1) terms (because that will mean that the successive values of the

variance V
(d)
0 are more likely to be consistent with the underlying stochastic process for V (t))

which means minimising the negative of P (V
(d)
0 , d, V

(d−1)
0 , d− 1).

• A typical value of D might be between 2 and 10.

• What has this achieved?

• On the downside, we now have to value ND options rather than N and we have to minimize

by choice of D + 4 parameters rather than by choice of 5 parameters so we have made the

calibration larger.

• On the upside, we can use data for D days and try to make sure that successive days

calibrations are internally consistent with the stochastic process that we are trying to fit.

• Note that the final calibrated value of V0 that we are interested in is simply V
(D)
0 .

62



Calibration 18 p 63/67

• The transition probability density function P (V (u), u, V (s), s) is known in closed-form (in

terms of Bessel functions) for the Heston (1993) process (see p607, chapter 13 of Lipton

(2001)).

• We have illustrated this approach for the Heston (1993) model but the same approach could,

for example, be used for the double Heston model or indeed any stochastic volatility model.

• It is better for this approach if the transition probability density function is known, in

closed-form, for the model under consideration (as it is for Heston (1993) model) but, even if it

is not known in closed-form, if the first few moments are known, then the transition

probability density function could probably be satisfactorily approximated by a Edgeworth

series expansion.
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• Most of the possible methods described above for potentially improving the quality of

calibrations could be described as ad-hoc or as fudges. Nevertheless, it is worth reflecting that

the whole concept of calibrating a model by solving an ill-posed and unstable inverse problem

is also unsatisfactory.

• Taken in this context, and given the importance of calibration, it seems reasonable to use

every possible piece of information at our disposal.
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• Pricing a book of exotic options is not easy. The perfect model does not exist - even for fx

which I would say is the simplest-to-model asset class.

• A lot of lessons have been learnt by quants the hard way and a lot of models have been arrived

at by trial and error.
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